05/11/2009

Durée : 1h

Exercice I : QCM (10 points)

Cocher la case correspondant à la réponse exacte. Une bonne réponse rapporte 1 point, une mauvaise en enlève 0.5.

1. f est la fonction définie sur]0 ;+ ∞ [par f(x) = $\frac{e^x}{x}$. Sa limite en + ∞ est ...

0 +∞

2. L'approximation affine de e^{2x} pour x proche de 1 est...

 $e^{2}(2x+1)$ $e^{2}(x-1)$ $e^{2}(2x-1)$

3. La fonction f définie par $\frac{1}{e^x}$ est dérivable sur IR et sa dérivée est ...

 $-e^{-x}$ $\frac{1}{e^x}$

4. La limite, quand x tend vers 0 de $\frac{e^{2x}-1}{x}$ est ...

Désormais, f représente la fonction définie par $f(x) = x + 1 - \frac{2e^x}{e^x + 1}$.

6. La fonction f est définie sur

 \mathbb{R}^* \mathbb{R} $]0;+\infty[$

7. Pour tout x, on a $\frac{e^x}{e^x+1}$:

 $\frac{1}{e^{-x}+1}$ 1/2 1 + e^x

- **8.** La droite Δ d'équation y = x + 1 est asymptote à Cf en $+\infty$ en $+\infty$ et en $-\infty$
- **9.** Cf intercepte son asymptote Δ igamais une seule fois plus d'une fois
- **10.** Sur son domaine, la fonction f est : sans parité impaire paire

Exercice II: (7 points)

f est la fonction définie sur IR^* par $f(x) = \frac{e^x}{x}$

- 1. Etudier les limites de f aux bornes de son domaine.
- 2. Calculer la fonction dérivée de f.
- 3. Etudier les variations de f.
- 4. Combien de solutions admet l'équation f(x) = 2?

Exercice III: (3 points)

Prérequis : exp(0) = 1

Pour tout réels x et y, on a exp(x+y) = exp(x).exp(y)

- 1. Montrer que pour tout réel x on a $\exp(-x) = \frac{1}{\exp(x)}$
- 2. Montrer que pour tout réel x on a $exp(2x) = (exp(x))^2$.
- 3. En déduire que la fonction exp est strictement positive sur $\mathbb R$.

Exercice I: QCM (10 points)

1. f est la fonction définie sur]0 ;+ ∞ [par f(x) = $\frac{e^x}{r}$. Sa limite en + ∞ est ...

0

+∞ (résultat de cours à savoir)

2. L'approximation affine de e^{2x} pour x proche de 1 est...

 $e^{2}(2x+1)$

 $e^{2}(x-1)$

Soit $f(x) = e^{2x}$.

Pour x proche de 1, $f(x) \approx f'(1)(x-1) + f(1)$ (« on remplace la courbe par sa tangente ») $f'(x) = 2e^{2x}$ donc $f'(1) = 2e^2$. On a alors $f(x) \approx 2e^2(x-1) + e^2$ c'est à dire $f(x) \approx e^2(2x-1)$

3. La fonction f définie par $\frac{1}{e^x}$ est dérivable sur IR et sa dérivée est ...

 $0 \qquad \qquad -e^{-x} \qquad \qquad \frac{1}{e^x}$ Comme f(x) = e^{-x} et (e^u)' = $u'e^u$, on a f'(x) = $(-x)'e^{-x}$ = $-e^x$

4. La limite, quand x tend vers 0 de $\frac{e^{2x}-1}{x}$ est ...

 $\frac{e^{2x}-1}{x}=2\times\frac{e^{2x}-1}{2x}=2\times\frac{e^{x}-1}{x}$ et on sait que $\lim_{x\to 0}\frac{e^{x}-1}{x}=1$ donc ...

5. L'équation $e^{2x} - e^x + 1 = 0$ a :

Désormais, f représente la fonction définie par $f(x) = x + 1 - \frac{2e^x}{e^x + 1}$.

6. La fonction f est définie sur

10; +∞[

 $\forall x \in \mathbb{R}, e^x > 0 \text{ donc } e^x + 1 \neq 0$

7. Pour tout x, on a $\frac{e^x}{e^x+1}$:

 $1 + e^{x}$

$$\frac{1}{e^{-x} + 1} = \frac{1}{1/e^x + 1} = \frac{e^x}{1 + e^x}$$

8. La droite \triangle d'équation y = x + 1 est asymptote à Cf en $+\infty \qquad \qquad en +\infty \text{ et en } -\infty$ $f(x) = x + 1 - \frac{2e^x}{e^x + 1} = x + 1 + r(x) \text{ avec } r(x) = -\frac{2e^x}{e^x + 1} \text{ . Quand } x \to -\infty, \ e^x \to 0 \text{ donc } r(x) \to 0$

9. Cf intercepte son asymptote Δ

une seule fois

plus d'une fois

Cf intercepte son asymptote Δ quand f(x) = x + 1.

Or $f(x) = x + 1 \Leftrightarrow \frac{2e^x}{e^x + 1} = 0 \Leftrightarrow e^x = 0$ ce qui est impossible.

10. Sur son domaine, la fonction f est :

sans parité impaire paire

On a
$$f(-x) = -x + 1 - \frac{2e^{-x}}{e^{-x} + 1} = -x + 1 - \frac{2/e^{x}}{1/e^{x} + 1}$$

$$= -x + 1 - \frac{2}{1 + e^{x}} = -x + 1 - \frac{(2 + 2e^{x}) - 2e^{x}}{1 + e^{x}} = -x + 1 - 2 + \frac{2e^{x}}{1 + e^{x}} = -x - 1 + \frac{2e^{x}}{1 + e^{x}}$$

Ainsi, f est impaire.

Exercice II: (7 points)

f est la fonction définie sur IR* par f(x) = $\frac{e^x}{x}$

- 1. Etudier les limites de f aux bornes de son domaine.
 - > on sait que $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ (résultat de croissance comparée en l'infini)
 - > quand $x \to -\infty$, $e^x \to 0$ donc $\lim_{x \to -\infty} f(x) = 0$
 - > quand $x \to 0^-$, $e^x \to 1$ donc $\lim_{x \to 0^-} f(x) = -\infty$
 - > quand $x \to 0^+$, $e^x \to 1$ donc $\lim_{x \to 0^+} f(x) = +\infty$
- 2. Calculer la fonction dérivée de f.

$$f'(x) = \frac{(e^x)'x - e^x(x)'}{x^2} = \frac{xe^x - e^x}{x^2} = \frac{e^x(x - 1)}{x^2}$$

3. Etudier les variations de f.

dans \mathbb{R}^* , $x^2 > 0$ et $e^x > 0$ donc f'(x) a le signe de x-1 on en déduit que : pour $x \in]-\infty$; 0[, f'(x) < 0 donc f est \searrow de 0 à $-\infty$ pour $x \in]0$; 1[, f'(x) < 0 donc f est \searrow de $+\infty$ à e pour $x \in [1; +\infty[$, $f'(x) \ge 0$ donc f est \nearrow de e à $+\infty$

4. Combien de solutions admet l'équation f(x) = 2?

pour $x \in]-\infty$; 0[, f est majorée par 0 donc $f(x) \neq 2$ pour $x \in]0$; $+\infty$ [, f(x) est minorée par e>2 donc $f(x) \neq 2$

-> L'équation f(x) = 2 n'a donc pas de solution.

Exercice III: (3 points)

Prérequis: $(1) \exp(0) = 1$

- (2) Pour tous réels x et y, on a $exp(x+y) = exp(x) \times exp(y)$
- **1.**Montrer que pour tout réel x on a exp(-x) = $\frac{1}{\exp(x)}$.

Appliquons (2) pour y = -x:

$$\exp(x) \times \exp(-x) = \exp(x + (-x)) d'après (2)$$

 $= \exp(0) = 1 \text{ d'après } (1)$

donc exp(-x) = 1/exp(x)

2. Montrer que pour tout réel x on a $exp(2x) = (exp(x))^2$.

Appliquons (2) pour y = x:

$$(\exp(x))^2 = \exp(x) \times \exp(x) = \exp(x + x) \text{ d'après (2)}$$
$$= \exp(2x)$$

- 3.En déduire que la fonction exp est strictement positive sur \mathbb{R} .
- $> \forall x \in \mathbb{R}, \exp(x) = \exp(2(x/2)) = (\exp(x/2))^2 \text{ donc } \exp(x) \ge 0$

> Supposons qu'il existe un réel x tel que $\exp(x) = 0$. On aurait : $\exp(x) \times \exp(-x) = 1$ d'après 1.

Mais $\exp(x) \times \exp(-x) = 0 \times \exp(-x) = 0$ et comme $1 \neq 0$! donc $\exp(x)$ n'est jamais nulle