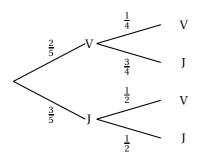
EXERCICE 1 3 points

Commun à tous les candidats

- **1.** Pour t = 1, on obtient bien le triplet (3; 1; -4): affirmation C
- 2. \overrightarrow{u} (2; -1; -1) est un vecteur directeur évident, donc $-\overrightarrow{u}$ (-2; 1; 1) en est aussi un: affirmation B.
- 3. $M \in \mathcal{D} \cap \mathcal{P} \iff 1 + 2t + 4 2t + 9 + 3t = 0 \iff 14 = 3t \iff t = \frac{14}{3}$. Il existe donc un seul point commun: affirmation C.
- **4.** Le triplet(1; 3; 2) vérifie x + 2y 3z 1 = 0: affirmation B.
- **5.** Un vecteur normal à \mathcal{Q}_{\in} est le vecteur $\overrightarrow{v_2}$ (4; -5; 2) et $\overrightarrow{u} \cdot \overrightarrow{v_2} = 0$: affirmation
- **6.** On a $d(T, \mathcal{P}) = \frac{|-1-6-6-1|}{\sqrt{1+4+9}} = \frac{14}{\sqrt{14}} = \sqrt{14}$: affirmation A

EXERCICE 2 5 points

Commun à tous les candidats



- **a.** On a en suivant la branche supérieure $p(V) = \frac{2}{5} \times \frac{1}{4} = \frac{1}{10}$. De même $p(J) = \frac{3}{5} \times \frac{1}{2} = \frac{3}{10}$.
 - **b.** En tournant la roue, la probabilité de gagner $20 \in \text{est } \frac{90}{360} = \frac{1}{4}$, celle de gagner 100 € est donc $\frac{1}{8}$; par différence la probabilité d'être remboursé(e) est $\frac{5}{8}$.

On a donc
$$p_R(V) = \frac{5}{8}$$
.
Or $p_R(V) = \frac{p(V \cap R)}{p(V)} \iff \frac{5}{8} = \frac{p(V \cap R)}{\frac{1}{10}} \iff p(V \cap R) = \frac{5}{8} \times \frac{1}{10} = \frac{5}{80}$.

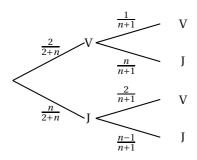
- **c.** On a $p(R) = p(J) + p(V \cap R) = \frac{3}{10} + \frac{5}{80} = \frac{29}{80}$
- **d.** $p(100) = \frac{1}{10} \times \frac{1}{8} = \frac{1}{80}$; $p(20) = \frac{1}{10} \times \frac{1}{4} = \frac{1}{40}$
- **a.** X peut prendre les valeurs : -m; 100 m; 20 m; 0.

x_i	-m	100 - m	20 - m	0
$p(X = x_i)$	6	1	1	29
$p(X-X_i)$	10	80	40	80

c. On a E(X) =
$$\sum_{i=1}^{4} p_i \times x_i = -\frac{6m}{10} + \frac{100 - m}{80} + \frac{20 - m}{40} + 0 = \frac{140 - 51m}{80}$$
.

- **d.** L'organisateur ne perdra pas d'argent si $E(X) < 0 \iff \frac{140 51m}{80} < 0 \iff m > \frac{140}{51}$. Donc il faut que m soit au moins fixé à 3 euros.
- 3. On reconnaît une expérience de Bernoulli avec $p=\frac{4}{10}$ et n=4.

 La probabilité de ne pas perdre est égale à $\left(\frac{4}{10}\right)^4$, donc la probabilité de perdre au moins une fois est $1-\left(\frac{4}{10}\right)^4=1-0.025$ 6=0.974 4.
- 4. On obtient un nouvel arbre de probabilités :



On doit avoir
$$\frac{2n}{(n+1)(n+2)} + \frac{2n}{(n+1)(n+2)} \leqslant \frac{1}{2} \iff \frac{4n}{(n+1)(n+2)} \leqslant \frac{1}{2} \iff n^2 - 5n + 2 \geqslant 0$$
. Le trinôme $n^2 - 5n + 2$ a pour racines $n_1 = \frac{5 + \sqrt{17}}{2} \approx 4,56$ et $n_2 = \frac{5 - \sqrt{17}}{2} \approx 0,44$.

Il faut donc qu'il y ait plus de 4 boules jaunes.

EXERCICE 3 5 points

Réservé aux candidats n'ayant pas choisi l'enseignement de spécialité

I.

- 1. On $a(i^3 + (-8+i) \times i^2 + (17-8i) \times i = i + 8 i 17i 8 + 17i = 0 \iff i \text{ est solution}$ de (E).
- **2.** En développant le second membre et en identifiant les coefficients des termes de même degré, on obtient le système :

$$\begin{cases} a = 1 \\ ai + b = -8 + i \\ bi + c = 17 - 8i \\ ic = 17i \end{cases} \iff \begin{cases} a = 1 \\ b = -8 \\ c = 17i \end{cases}$$

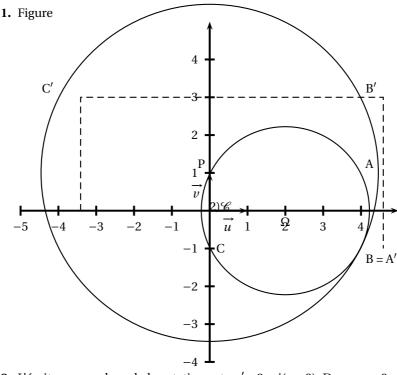
On a donc pour tout complexe z, $z^3 + (-8+i)z^2 + (17-8i)z + 17i = (z+i)((z^2 - 8z + 17).$

3. On a donc (E) \iff $(z+i)((z^2-8z+17)=0 \iff \begin{cases} z+i &= 0 \\ z^2-8z+17 &= 0 \end{cases}$. On trouve aussitôt que :

$$S = \{-i : 4 + i : 4 - i\}$$

2

II.



- 2. L'écriture complexe de la rotation est : z'-2=i(z-2). Donc $z_S-2=i(4+i-2)$ $\iff z_S=2+2i-1=1+2i$.
- 3. D'après la question précédente : $\Omega S = \Omega A$. A et B sont symétriques autour de (Ox), et $\Omega \in (Ox)$, donc $\Omega A = \Omega B$; enfin B et C ayant la même ordonnée, Ω appartient à la médiatrice de [BC] et $\Omega B = \Omega C$. Conclusion B, A, S et C appartiennent à un cercle $\mathscr C$ de centre Ω . Le rayon est égal à $\Omega C = \sqrt{2^2 + (-1)^2} = \sqrt{5}$.
- 4. **a.** D'après la définition algébrique $z_{A'} = \frac{i(4+i)+10-2i}{4+i-2} = \frac{9+2i}{2+i} = \frac{(9+2i)(2-i)}{(2+i)(2-i)} = \frac{20-5i}{5} = 4-i = z_B.$ $z_{B'} = \frac{i(4-i)+10-2i}{4-i-2} = \frac{11+2i}{2-i} = \frac{(11+2i)(2+i)}{(2-i)(2+i)} = \frac{20+15i}{5} = 4+3i.$ $z_{C'} = \frac{i(-i)+10-2i}{-i-2} = \frac{11-2i}{-2-i} = \frac{(11-2i)(-2+i)}{(-2-i)(-2+i)} = \frac{-20+15i}{5} = -4+3i = z_B.$
 - **b.** $z'_{A'} = 4 i$, $z'_{B'} = -4 + 3i$, $z'_{C'} = -4 + 3i$.
 - **c.** PA' = $|4 i i| = |4 2i| = \sqrt{20} = 2\sqrt{5}$; PB' = $|4 + 3i - i| = |4 + 2i| = \sqrt{20} = 2\sqrt{5}$; PC' = $|-4 + 3i - i| = |4 + 2i| = \sqrt{20} = 2\sqrt{5}$;

Donc A', B' et C' appartiennent au cercle \mathscr{S}' de centre P et de rayon $\sqrt{5}$.

- **d.** On a $z' = \frac{i(z-2)+10}{z-2} = i + \frac{10}{z-2} \iff z' i = \frac{10}{z-2}$ et en prenant les modules $|z'-i| = \frac{10}{z-i}$. Donc géométriquement $PM' = \frac{10}{PM}$.
- **e.** Si $M \in \mathscr{C} \longrightarrow \Omega M = \sqrt{5}$. D'après la question précédente $|z' i| = \frac{10}{\sqrt{5}} = 2\sqrt{5}$.
- **f.** Géométriquement la dernière relation signifie : $PM' = 2\sqrt{5} \iff$ les points M' appartiennent au cercle \mathscr{C}' .

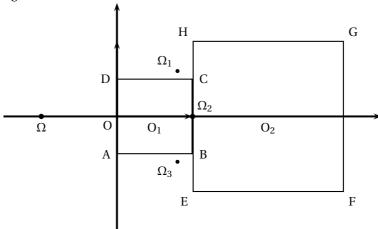
Remarque : $M \in \mathscr{C} \longrightarrow z = 2 + \sqrt{5} \mathrm{e}^{\mathrm{i}\theta}$ avec $\theta \in [0 ; 2\pi[$. Après calcul on en déduit que $z' = \mathrm{i} + 2\sqrt{5} \mathrm{e}^{-\mathrm{i}\theta}$ avec $\theta \in [0 ; 2\pi[$. En prenant les modules on trouve bien que $|z' - \mathrm{i}| = 2\sqrt{5}$.

g. Conclusion : l'image du cercle \mathscr{C} est donc **tout** le cercle \mathscr{C}' .

EXERCICE 3 5 points

Réservé aux candidats ayant choisi l'enseignement de spécialité

1. Figure.



2. L'égalité vectorielle $\overrightarrow{\Omega M'} = 2\overrightarrow{\Omega M}$ se traduit par $z' + 1 = 2(z+1) \iff z' = 2z+1$.

$$z'_{A'} = 2z_A + 1 = 2 \times \left(-\frac{i}{2}\right) + 1 = 1 - i = z_E.$$

$$z'_{B'} = 2z_B + 1 = 2 \times \left(1 - \frac{i}{2}\right) + 1 = 3 - i = z_F.$$

$$z'_{C'} = 2z_C + 1 = 2 \times \left(1 + \frac{i}{2}\right) + 1 = 3 + i = z_G.$$

$$z'_{D'} = 2z_D + 1 = 2 \times \left(\frac{i}{2}\right) + 1 = 1 + i = z_H.$$

L'image de S_1 par h est donc S_2 .

- **3.** $g = h^{-1} \circ s$.
 - **a.** La similitude *s* transformant le carré de côté 1 en le carré de côté 2, le rapport de la similitude estégal à 2.
 - **b.** h^{-1} est l'homothétie de centre Ω de rapport $\frac{1}{2}$; la composée g est donc une similitude directe de rapport 1, donc une isométrie. S_1 a pour image par s S_2 qui lui-même a pour image par h^{-1} , S_1 . Conclusion g laisse S_1 globalement invariante.
 - **c.** S_1 étant invariant, son centre l'est également : $g(O_1) = O_1$.
 - d. Les isométries du carré sont :
 - l'identité;
 - la rotation r_1 de centre O_1 d'angle $\frac{\pi}{2}$ [2 π];
 - la rotation r_2 de centre O_1 d'angle π [2 π] (symétrie autour de O_1);
 - la rotation r_3 de centre O_1 d'angle $-\frac{\pi}{2}$ [2 π].
 - **e.** On a $s = h \circ g$. If y a donc quatre similar qui transforment S_1 en S_2 :
 - l'homothétie h;
 - la composée de h avec r_1 ;
 - la composée de h avec r_2 ;
 - la composée de h avec r_3 ;
- 4. Écritures complexes de ces isométries :
 - **a.** $h \circ r_1$: L'écriture complexe de r_1 est $z' - \frac{1}{2} = \mathrm{e}^{\mathrm{i}\frac{\pi}{2}} \left(z - \frac{1}{2}\right) \iff z' = \mathrm{i}z - \frac{\mathrm{i}}{2} + \frac{1}{2}$; celle de $h \circ r_1$ est donc : $z' = 2\mathrm{i}z - \mathrm{i} + 2$.

L'écriture complexe de r_2 est $z' - \frac{1}{2} = e^{i\pi} \left(z - \frac{1}{2} \right) \iff z' = -z + 1$; celle de $h \circ r_2$ est donc z' = -2z + 3;

L'écriture complexe de r_3 est $z' - \frac{1}{2} = e^{-i\frac{\pi}{2}} \left(z - \frac{1}{2}\right) \iff z' = -iz + \frac{i}{2} + \frac{1}{2}$; celle de $h \circ r_3$ est donc z' = -2iz + i + 2

b. Les centres de ces similitudes sont les points invariants :

- Centre Ω_1 de $h \circ r_1$. Son affixe ω_1 est solution de $z = 2iz i + 2 \iff$ $z = \omega_1 = \frac{4+3i}{5}.$ - Centre Ω_2 de $h \circ r_2$. Son affixe ω_2 est solution de $z = -2z+3 \iff$
- Centre Ω_3 de $h \circ r_3$. Son affixe ω_3 est solution de $z = -2iz + i + 2 \iff z = \omega_3 = \frac{4-3i}{\pi}$.

7 points **EXERCICE 4**

Commun à tous les candidats

1. Si n = 1, $I_1 = \int_0^2 (2 - x) e^x dx$. On intègre par parties : u(x) = 2 - x $v'(x) = e^x$. Les fonctions u et v sont dérivables et leurs dérivées continues sur l'intervalle [0; 2], donc :

$$I_1 = [(2-x)e^x]_0^2 - \int_0^2 e^x dx = -2 + [e^x]_0^2 = -2 + e^2 - 1 = e^2 - 3.$$

2. On a les équivalences $0 \le x \le 2 \iff -2 \le -x \le 0 \iff 0 \le 2 - x \le 2 \iff 0 \le (2 - x)^n \le 2^n \iff 0 \le (2 - x)^n e^n \le 2^n e^n \iff 0 \le \frac{1}{n!} (2 - x)^n e^n \le \frac{1}{n!} 2^n e^n$.

On en déduit l'ordre des intégrales suivantes: $\int_0^2 0 \, \mathrm{d}x \le \int_0^2 \frac{1}{n!} (2 - x)^n e^n \, \mathrm{d}x \le \int_0^2 \frac{1}{n!} 2^n e^n \, \mathrm{d}x \iff 0 \le I_n \le \frac{1}{n!} \times 2^n \left[e^x \right]_0^2 \iff$

 $0\leqslant I_n\leqslant \frac{2^n\left(\mathrm{e}^2-1\right)}{n!}.$

3. On a $I_{n+1} = \int_0^2 \frac{1}{(n+1)!} (2-x)^{n+1} e^x dx$. Intégrons par parties en posant : $u(x) = (2-x)^{n+1}$ $v'(x) = e^x$ $u'(x) = -(n+1)(2-x)^n$ $v(x) = e^x$.

Les fonctions u et v sont dérivables et leurs dérivées continues sur l'intervalle

 $I_{n+1} = \frac{1}{(n+1)!} \left(\left[(2-x)^{n+1} e^x \right]_0^2 - \int_0^2 -(n+1)(2-x)^n e^x dx \right) =$ $-\frac{2^{n+1}}{(n+1)!} + \frac{1}{n!} \int_0^2 (2-x)^n e^x dx = -\frac{2^{n+1}}{(n+1)!} + I_n.$

4. Démontrons la relation par récurrence

• Initialisation : $e^2 - 1 = 2 + I_1 \iff I_1 = e^2 - 3$: vrai ; Hérédité : supposons que $e^2 = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} + I_n$. D'après la question précédente, on peut écrire : $e^2 = 1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} + \frac{2^{n+1}}{(n+1)!} + I_{n+1}$ qui est bien la relation demandée au rang n + 1. L'égalité est donc vraie pour tout nsupérieur ou égal à 1.

a. Quel que soit le naturel n, $u_n > 0$. Le quotient $\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{(n+1)!} \times \frac{n!}{2^n} = \frac{n!}{(n+1)!}$

5

Or
$$n \geqslant 3 \iff n+1 \geqslant 4 \iff \frac{1}{n+1} \leqslant \frac{1}{4} \iff \frac{2}{n+1} \leqslant \frac{1}{2}$$
.
Conclusion: si $n \geqslant 3$, alors $u_{n+1} \leqslant \frac{1}{2}u_n$.

b. En écrivant toutes les inégalités précédentes de 3 à n et en multipliant membres à membres (tous les termes sont supérieurs à zéro) on obtient :

$$0\leqslant u_3\times\left(\frac{1}{2}\right)^{n-3}.$$

c. On a $-1 < \frac{1}{2} < 1$, donc $\lim_{n \to +\infty} \left(\frac{1}{2}\right)^{n-3} = 0$. Donc d'après l'encadrement trouvé à la question b. on a $\lim_{n \to +\infty} u_n = 0$.

On a également $\lim_{n\to+\infty}\frac{2^n}{n!}=0$; donc d'après l'encadrement démontré à la question 2. on a $\lim_{n\to+\infty}I_n=0$.

d. En reprenant l'égalité obtenue à la question 4. et par limite on obtient que :

$$e^2 = \lim_{n \to +\infty} \left(1 + \frac{2}{1!} + \frac{2^2}{2!} + \dots + \frac{2^n}{n!} \right).$$