Corrigé

France 2007

Exercice 1

Soient (P): x+2y-z+1=0 et (P'): -x+y+z=0.

1. Les plans (P) et (P') sont perpendiculaires ssi leurs vecteurs normaux sont orthogonaux.

Or on a $\vec{n} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \cdot \vec{n'} \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} = -1 + 2 - 1 = 0$ donc ces plans sont bien perpendiculaires.

<u>2.</u> Par conséquent, ces plans s'interceptent suivant une droite. Remplaçons les cordonnées d'un point de la droite proposée (d) dans chacun des 2 plans.

Comme $\left(-\frac{1}{3}+t\right)+2\left(-\frac{1}{3}\right)-(t)+1=...=0$, la droite d est incluse dans le plan (P).

Comme $-\left(-\frac{1}{3}+t\right)+\left(-\frac{1}{3}\right)+\left(t\right)=...=0$, la droite d est incluse dans le plan (P').

La droite d : $\begin{cases} x = -\frac{1}{3} + t \\ y = -\frac{1}{3} \end{cases}$ est donc la droite d'intersection cherchée. z = t

3. Il s'agit ici d'utiliser la formule du cours, avec $A \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$: on a $d(A, (P)) = \frac{|0+2\times 1-1+1|}{\sqrt{1+2^2+1}} = \frac{2}{\sqrt{6}}$ et

 $d(A,(P')) = \frac{|-0+1+1|}{\sqrt{1+1+1}} = \frac{2}{\sqrt{3}}.$

4. Bon là, faites un petit dessin : deux plans P et P' perpendiculaires, d la droite d'intersection.

A un point extérieur aux deux plans : la distance de A à d est la longueur AH, où H est le projeté orthogonal de A sur d. Notons A' le projeté orthogonal de A sur P'.

Le triangle AA'H est rectangle en A', de coté de longueurs AH, d(A,P) et d(A,P') : d'après le théorème de

Pythagore, $d(A,(d))^2 = AH^2 = \left(\frac{2}{\sqrt{6}}\right)^2 + \left(\frac{2}{\sqrt{3}}\right)^2 = 2$ donc la distance cherchée est $\sqrt{2}$.

Les coordonnées du point J sont donc (-1;7;6).

Exercice 2

1. ROC : u et v étant dérivables, $u \times v$ l'est aussi. On a $(u \times v)' = u'v + v'u$.

Comme les fonctions u et v sont à dérivées continues, et que u et v sont dérivables, le membre de droite est une fonction continue donc la fonction $(u \times v)$ ' l'est aussi.

On peut alors intégrer : $\int_a^b (u \times v)' = \int_a^b (u'v + v'u) \Leftrightarrow \int_a^b (u \times v)' = \int_a^b u'v + \int_a^b v'u \Leftrightarrow \int_a^b u'v = \int_a^b (u \times v)' - \int_a^b v'u : on$ obtient donc bien la formule d'IPP.

 $D.\ PINEL,\ Site\ Mathemitec: \underline{http://mathemitec.free.fr/index.php}$

2.
$$\underline{\mathbf{a}}$$
. Posons $I = \int_{0}^{\pi} e^{x} \sin(x) dx$ et $J = \int_{0}^{\pi} e^{x} \cos(x) dx$.

Faisons une IPP sur I :
$$\begin{cases} u = \sin(x) \\ v' = e^x \end{cases} \Rightarrow \begin{cases} u' = \cos(x) \\ v' = e^x \end{cases} \text{ d'où } I = \underbrace{\left[\sin(x) \times e^x\right]_0^{\pi}}_{0} - \underbrace{\int_0^{\pi} e^x \cos(x) dx}_{0} = -J .$$

De même, sur J:
$$\begin{cases} u = \cos(x) \\ v' = e^x \end{cases} \Rightarrow \begin{cases} u' = -\sin(x) \\ v' = e^x \end{cases} \text{ d'où } I = \left[\cos(x) \times e^x\right]_0^{\pi} - \int_0^{\pi} e^x \left(-\sin x\right) dx = -e^{\pi} - 1 + J.$$

$$\underline{\mathbf{b.}} \text{ Il suffit alors de résoudre le système } \begin{cases} I = -J \\ I = J + e^{\pi} + 1 \end{cases} \Leftrightarrow \begin{cases} I = -J \\ 2I = e^{\pi} + 1 \text{ (L1)} + \text{ (L2)} \end{cases} \Leftrightarrow \begin{cases} J = -\frac{e^{\pi} + 1}{2} \\ I = \frac{e^{\pi} + 1}{2} \end{cases}.$$

Exercice 3 – non spé

Partie A

Soit (E) l'équation $z^3 - (4+i)z^2 + (13+4i)z - 13i = 0$: posons $P(z) = z^3 - (4+i)z^2 + (13+4i)z - 13i$.

- **1.** i est solution de (E) ssi P(i) = 0 : or $P(z) = i^3 (4+i)i^2 + (13+4i)i 13i = ... = 0$ puisque $i^3 = i^2i = -i$.
- 2. Le polynôme P admet i comme racine donc d'après le cours, il se factorise par (z-i). Autrement dit, il existe des complexes a, b et c tels que $P(z) = (z-i)(az^2 + bz + c)$.

Remarquons que pour ceux qui la connaissent, la méthode de la division euclidienne permet de déterminer rapidement a, b et c.

Développons $(z-i)(az^2+bz+c) = ... = z^3(a)+z^2(b-ia)+z(c-ib)-ic$: par identification avec

$$P(z) = z^{3} - (4+i)z^{2} + (13+4i)z - 13i, \text{ on a} \begin{cases} a = 1\\ b - ia = -4 - i\\ c - ib = 13 + 4i \end{cases} \Leftrightarrow \begin{cases} a = 1\\ b = -4\\ c = 13\\ c = 13 \end{cases}.$$

3. Par conséquent, $P(z) = 0 \Leftrightarrow \begin{vmatrix} z - i = 0 \\ z^2 - 4z + 13 = 0 \end{vmatrix}$: le second membre est un trinôme à coefficients réels, de discriminant négatif. Les méthodes habituelles donnent pour racines : z = 2 + 3i, $z' = \overline{z}$.

Ainsi les solutions de (E) sont i, 2+3i et 2-3i.

Partie B

Posons A(i), B(2+3i) et C(2-3i) (rassurant d'après les précédentes racines...)

1. La rotation r de centre B et d'angle $\frac{\pi}{4}$ a pour écriture complexe $z'-z_B = e^{i\frac{\pi}{4}}(z-z_B)$ où M(z) a pour image M'(z').

Comme A' = r(A), on a: $z_A = z_B + e^{i\frac{\pi}{4}} (z - z_B) = 2 + 3i + \left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) (i - (2 + 3i)) = \dots = 2 + i(3 - 2\sqrt{2}).$

<u>2.</u> Pour montrer que les points A', B et C sont alignés il suffit de vérifier que les vecteurs $\overrightarrow{A'B}$ et \overrightarrow{BC} sont colinéaires.

 $\overline{A'B}(z_B - z_{A'}) \Leftrightarrow \overline{A'B}(i(6-2\sqrt{2}))$ et $\overline{BC}(z_C - z_B) \Leftrightarrow \overline{BC}(-6i)$: ces deux vecteurs sont colinéaires au vecteur $\vec{v}(i)$ donc ils sont colinéaires entre eux.

Rappelons que par définition, l'homothétie de centre Ω et de rapport k vérifie $\overrightarrow{\Omega M}' = k \overrightarrow{\Omega M}$: ici,

D. PINEL, Site Mathemitec : http://mathemitec.free.fr/index.php

Terminale S France, Juin 2007 Sujets de Bac

 $\overrightarrow{BA'}\left(-i\left(6-2\sqrt{2}\right)\right) = -\frac{6-2\sqrt{2}}{6}\overrightarrow{BC}\left(6i\right) \text{ cad } \overrightarrow{BA'} = -\frac{6-2\sqrt{2}}{6}\overrightarrow{BC}: \text{l'homothétie de centre B qui transforme C}$ en A' est donc de rapport $k = -\frac{6-2\sqrt{2}}{6}$.

Son écriture complexe est donc $z'-z_B = k(z-z_B)$ avec $k = -\frac{6-2\sqrt{2}}{6}$ et B(2+3i)...

Exercice 3 - spé

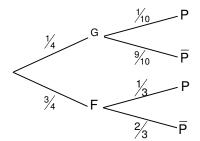
Plus tard...

Exercice 4

1. Si X désigne le nombre de produit vendus, X suit une loi binomiale de paramètres n = 5 et p = 0.2. En effet, voir 5 clients par jour revient à répéter 5 fois, de manière identique et indépendante, le rdv avec un seul client, qui achètera avec une probabilité p = 0.2.

Ainsi, $P(X = 2) = {5 \choose 2} 0.2^2 0.8^3$: réponse d.

2. Représentons la situation par un arbre : D'après la formule des probabilités totales, $P(P) = P(P \cap G) + P(P \cap F) = \frac{1}{4} \times \frac{1}{10} + \frac{3}{4} \times \frac{1}{3} = 0.275 :$ réponse b.



- 3. On a $P_P(G) = \frac{P(P \cap G)}{P(P)} = \frac{\frac{1}{4} \times \frac{1}{10}}{0.275} \approx 0.091$: réponse b.
- **4.** Rappelons que l'aire d'un disque de rayon r est πr^2 : la zone la plus éloignée du centre a pour aire $A = \pi (30^2 20^2) = 500\pi$. L'aire de la cible est donnée par $B = \pi 30^2 = 900\pi$.

La probabilité cherchée est donc $p = \frac{500\pi}{900\pi} = \frac{5}{9}$: réponse a.

Exercice 5

PARTIE A

Soit f la fonction définie sur l'intervalle]-1; $+\infty$ [par : $f(x) = x - \frac{\ln(1+x)}{1+x}$.

1. f est dérivable sur I et on a : $f'(x) = 1 - \frac{\frac{1}{1+x} \times (1+x) - \ln(1+x)}{(1+x)^2} = 1 - \frac{1 - \ln(1+x)}{(1+x)^2} = \frac{(1+x)^2 - 1 + \ln(1+x)}{(1+x)^2}$.

3

D. PINEL, Site Mathemitec: http://mathemitec.free.fr/index.php

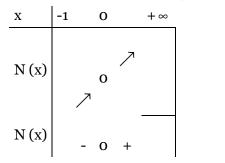
2. Posons (comme par hasard) $N(x) = (1+x)^2 - 1 + \ln(1+x)$: $N'(x) = 2(1+x) + \frac{1}{1+x}$.

Mais sur I, x > -1 donc 1+x > 0 et pour tout x de I, N'(x) > 0. Le fonction N est donc croissante sur I.

Par ailleurs,
$$N(0) = 1 - 1 + \ln(1) = 0$$
.

Etant croissante, la fonction N est négative avant 0 et positive après.

Le tableau suivant est incomplet (limites...: il est donné à titre illustratif.



Comme
$$f'(x) = \frac{N(x)}{(1+x)^2}$$
, f' est du signe de f.

Ainsi, f est décroissante sur]-1;0] et croissante sur $[0;+\infty[$.

<u>3.</u> Les points d'intersection de C et de D : y = x ont pour abscisse(s) les solutions de f(x) = x.

Or,
$$f(x) = x \Leftrightarrow x - \frac{\ln(1+x)}{1+x} = x \Leftrightarrow \frac{\ln(1+x)}{1+x} = 0 \Leftrightarrow \ln(1+x) = 0 \Leftrightarrow 1+x=1$$
: il existe donc un unique points d'intersection, celui d'abscisse 0 et donc d'ordonnée $f(0) = 0$.

PARTIE B

- 1. La fonction f est croissante sur [0;4] donc $0 \le x \le 4 \Rightarrow f(0) \le f(x) \le f(4) \Rightarrow 0 \le f(x) \le 4$ puisque $f(4) = 4 \frac{\ln(5)}{5} \le 4$.
- **2. a.** Voir la partie animations du site pour le tracé de termes de la forme $u_{n+1} = f(u_n)$.
 - **b.** Démontrons par récurrence que pour tout n, $u_n \in [0;4]$.

Soit P(n) la proposition « $u_n \in [0; 4]$ ».

- -- P(0) est vraie puisque $u_0 = 4$.
- -- Supposons P(n) vraie cad que $u_n \in [0;4]$. D'après le B1, on sait alors que $f(u_n) \in [0;4]$ cad $u_{n+1} \in [0;4]$. La proposition est donc héréditaire.
- -- Ainsi, pour tout n, $u_n \in [0; 4]$.
- **c.** Remarquons qu'un raisonnement par récurrence marcherait encore très bien : $P(n) \ll u_{n+1} \le u_n \gg u$ puisque la fonction f croît sur I. Mais restons \ll simple \gg :

$$u_{n+1} - u_n = f(u_n) - u_n = u_n - \frac{\ln(1 + u_n)}{1 + u_n} - u_n = -\frac{\ln(1 + u_n)}{1 + u_n} : \text{mais } u_n \ge 0 \text{ donc } 1 + u_n \ge 1 \ (\ge 0) \text{ et}$$

$$\ln(1+u_n) \ge \ln(1) \ge 0$$
 par croissance de ln. Ainsi, $u_{n+1} - u_n = -\frac{\ln(1+u_n)}{1+u_n} \le 0$ et la suite décroît.

- **d.** La suite est décroissante, minorée par 0 donc elle converge : notons L sa limite.
- **e.** Comme $u_n \in [0;4]$, on a $L \in [0;4]$. La fonction f est continue sur cet intervalle donc, comme $u_{n+1} = f(u_n)$, par passage à la limite $L = f(L) \Leftrightarrow L = 0$ d'après la partie A3.

4

D. PINEL, Site Mathemitec: http://mathemitec.free.fr/index.php